

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

VVER NPP experience and development. MIR.1200 project

Consortium: SKODA JS a.s. OKB Gidropress JSC Atomstroyexport JSC

Doctor of Science Vitaly Ermolaev Technical Director-Deputy Director Of Department Atomstroyexport JSC

10 January, 2012 Prague

Nuclear Reactors Technologies under developing in State Corporation Rosatom

Present Russian Nuclear Reactors Technologies:

- 1. Light-water reactors (VVER, VBER, etc.)
- 2. Gas-cooled reactors (GT-MGR, VTGR)
- 3. Metal-cooled reactors (BN, etc.)

These reactors were designed for

installation for wide range conditions

www.rosatom.ru

The content of this presentation is for discussion purposes only, shall not be considered as an offer and doesn't lead to any obligations to Rosatom and its affiliated companies. Rosatom disclaims all responsibility for any and all mistakes, quality and completeness of the information.

Evolution of VVER focusing on field-proven technology, compliance with modern international safety requirements and using reference and tested design solutions

www.rosatom.ru

The content of this presentation is for discussion purposes only, shall not be considered as an offer and doesn't lead to any obligations to Rosatom and its affiliated companies. Rosatom disclaims all responsibility for any and all mistakes, quality and completeness of the information.

VVER 440/1000 designs were developed for implementation in the Russia, Europe and Asia regions

Russian nuclear reactors worldwide

Russia	Globally	Total			
Constructed					
36	56	92			
Under current Rosatom operation					
32	-	32			
In Progress					
10	15	25			

Strong Reference and Challenging Perspectives More than 30 units of installed fleet

- 6 more units being in progress
- \geq 6 units pending by the customer

Two operating VVER-1000 power units at Tianwan NPP in China

www.rosatom.ru

VVER NPP defense-in-depth barriers

FUEL ELEMENT CLADDING Preventing of fission product release to coolant of primary circuit

PRIMARY CIRCUIT

Preventing of fission product release to containment SYSTEM OF PROTECTIVE TIGHT ENCLOSURES Preventing of fission product release to environment

www.rosatom.ru

VVER Nuclear Steam Supply System standard design equipment

Primary coolant circuit system with horizontal steam generators

- Thermal power 1.
- Primary coolant 2. circuit configuration – 4 loops Operation lifetime – 60 year
- 3. 4. -60 years
- SSE (SL-2) Seismic loads
 - 0.25 g

- 3200 MW

- The intentional crash of a 5. commercial airplane is considered
- 6. Availability factor - 92%

All equipment designed for railway trasportation.

Main technology parameters evolution within reference technology

Parameter	VVER-1000	VVER-1200
Nominal thermal power of the reactor, MW	3000	3200
Load factor	0,78	0,92*
Coolant pressure at the reactor outlet, MPa	15,7	16,2
Coolant temperature at the reactor inlet, °C	290	298,6
Coolant temperature at the reactor outlet, °C	319,6	329,7
Maximum linear heat rate, W/cm	448	420
Pressure at the outlet of SG steam header (absolute), MPa	6,27	7,0
Primary design pressure, MPa	17,64	17,64
Secondary design pressure, MPa	7,84	8,1
FA-maximum burnup fraction of fuel in FAs withdrawn (in the base equilibrium fuel cycle), MW day/kgU	55	up to 70*
FA-averaged burnup fraction of fuel in FAs withdrawn (in the base equilibrium fuel cycle), MW day/kgU	49	55
Period between refuellings, months	12	12/(18-24)*
Time of fuel residence in the core, year	4	4/5*

www.rosatom.ru

Fuel parameters evolution

	before 1997	1998-2000	from 1998	from 2003	from 2006	
FA type	TVS (TVS-M)	UTVS	TVSA	TVS-2	TVSA-ALFA TVS-2M	
Bundle type	DBA	U-Gd	U-Gd		U-Gd	
Reload batch average enrichment, % U ²³⁵	4,31	3,77	~4,26		4,83	4,88
FA quantity in reload batch, pcs.	54	48	42	54	36	60
FA burnup, MW×days/kgU	49	49	55		68	
Fuel cycle	3-year	3-year	4·(310-320) EFPD	3·(350-370) EFPD	5·(310-320) EFPD	3·(480-510) EFPD
Natural Uranium consumption kg/MW×days	0,240	0,205	0,199	0,210	0,1930,187	

www.rosatom.ru

VVER NPP safety objectives

www.rosatom.ru

VVER NPP safety systems for design basis accident protection

4x100% separated active safety systems

www.rosatom.ru

VVER NPP safety systems for severe accident management

The structures, systems and components fulfilling safety functions used in postulated core melt accidents (level 4 of Defense in Depth) are practically independent from the structures, systems and components used to prevent core melt accidents.

Active parts of the systems and components necessary for ensuring the containment function in a core melt accident are fulfil the single failure criterion

Hydrogen protection system

Passive heat removal system

Ex-vessel Core Catcher

Probabilistic Design Criteria

- Total core meltdown frequency less than 10⁻⁵ 1/plant-yr;
- Exclusion of accident scenarios, which can lead to large release at an early stage of an accident;
- Total limiting accident release frequency less than 10-7 1/plant-yr.

PSA Results for VVER-1000 Tianwan NPP operating in China:

1. Average total core damage frequency during	2.67*10 ⁻⁶
2. Average total core damage frequency during	7.2*10 ⁻⁷
shutdown regimes	
3. Average total core damage frequency for	3.39*10 ⁻⁶
internal initiating events	
4. Total limiting accident release frequency	6,3*10 ⁻⁸