Heterogenní spoje v energetice, zejména se zaměřením na svařování martenzitických ocelí s rozdílným obsahem Cr

Petr Hrachovina,

Böhler Uddeholm CZ s.r.o., phrachovina@bohler-uddeholm.cz

O svařování heterogenních spojů "černo-bílých" toho v různých publikacích bylo popsáno mnoho, v této přednášce se budu věnovat svařování heterogenních spojů materiálů s rozdílným obsahem Cr.

1. Svařování heterogenních spojů

Tabulka 1.1 obsahuje bainitické a martenzitické oceli, které nacházejí uplatnění v elektrárnách nové generace. Při stavbě různých součástí elektrárny vznikají smíšené spoje mezi materiály uvedenými v tabulce 1. Zvláštnosti, které přitom vznikají, jsou v podstatě známé z nauhličení dosud používaných ocelí. V první řadě se jedná o výskyt oduhličených a nauhličených oblastí. K tomuto byly již podány četné zprávy. Neexistují však žádné výsledky průzkumu ke dvojicím materiálů nových elektrárenských ocelí.

Označení	Prvky v hmotnostních %											
	С	Si	Mn	Cr	Ni	Мо	V	W	Nb	Ostatní	°C ¹⁾	
Bainitické oceli												
10CrMo9-10 (T/P22)	0,08-	<	0,40-	2,0-	-	0,90-	-	-	-	-	<u><</u> 550	
1.7380	0,14	0,50	0,80	2,5		1,10						
7CrWVNb9-6 (T/P23)	0,04-	<u><</u> 0,50	0,10-	1,9-	-	0,05-	0,20-	1,45-	0,02-	N ≤ 0,03	<u>< 550</u>	
	0,10		0,60	2,6		0,30	0,30	1,75	0,08	B 0,0005- 0,0060		
7CrMoVTiB10-10 (T/P24)	0,05-	0,15-	0,30-	2,20-	-	0,90-	0,20-	-	-	N <u>≤</u> 0,010	<u>≤</u> 550	
1.7378	0,10	0,45	0,70	2,60		1,10	0,30			B 0,0015-		
										0,0070 Ti 0.05-0.10		
	С	Si	Mn	Cr	Ni	Мо	V	W	Nb	Ostatní	Teplota	
											použití	
											°C 1)	
Martenzitické oceli												
(9 - 12 % Cr-oceli)												
X20CrMoV11-1	0,17-	<	<	10,0-	0,30-	0,80-	0,25-	-	-	-	<u>< 560</u>	
1.4922	0,23	0,50	1,0	12,5	0,80	1,20	0,35					
X10CrMoVNb9-1 (T/P91)	0,08-	0,20-	0,30-	8,0-	<	0,85-	0,18-	-	0,06-	N 0,03-0,07	<u><</u> 585	
1.4903	0,12	0,50	0,60	9,5	0,40	1,05	0,25		0,10			
X11CrMoWVNb9-1-1	0,09-	0,10-	0,30-	8,50-	0,10-	0,90-	0,18-	0,90-	0,06-	N 0,05-0,09	≤ 600	
(E911) 1.4905	0,13	0,50	0,60	9,50	0,40	1,10	0,25	1,10	0,10			
X10CrWMoVNb9-2 (T/P92)	0,07-	<	0,30-	8,5-	<	0,30-	0,15-	1,5-	0,04-	N 0,03-0,07	<u>≤</u> 620	
	0,13	0,5	0,60	9,5	0,40	0,60	0,25	2,0	0,09	B 0,001-0,006		
VM12-SHC	0,10-	0,40-	0,15-	11,0-	0,10-	0,20-	0,20-	1,30-	0,03-	Co 1,40-1,80	<u>≤</u> 620	
	0,14	0,60	0,45	12,0	0,40	0,40	0,30	1,70	0,08	N 0,030-0,070		
										ы 0,0030-0,006		

Tabulka1.1. Chemické složení a mechanické hodnoty jakosti nových bainitických a martenzitických materiálů a také ověřených žáropevných materiálů 10CrMo9-10, X20 a P91

¹⁾ konstrukčnÍ teplotní meze použití v elektrárenských odvětvích

Mechanické hodnoty při RT

	Rp0,2 MPa	Rm MPa	A %	Av (ISO-V) J						
10CrMo9-10 (T/P22)	> 310	480-630	> 18	> 40						
7CrWVNb9-6 (T/P23)	> 400	> 510	> 20	-						

7CrMoVTiB10-10 (T/P24)	> 450	585-840	> 17	> 41
X20 (1.4922)	> 500	700-850	> 16	> 39
T/P91 (1.4903)	> 450	620-850	> 17	> 41
E911 (1.4905)	> 450	620-850	>17	> 41
T/P92	> 440	620-850	>17	> 27
VM12-SHC	> 450	620-850	>17	> 27

V principu u smíšených spojů spočívá problematika mezi materiály s výrazně rozdílným obsahem chrómu v uhlíkové difúzi. Během tepelného zpracování po svaření difunduje uhlík do materiálu s vyšším obsahem chrómu. Tímto způsobem se v materiálu s nižším obsahem chrómu tvoří oblasti chudé na uhlík a v materiálu bohatším na chróm, oblasti obohacené uhlíkem, tzv. karbidový lem. Vlastnost těchto zón přitom závisí na teplotě a době žíhání. Vyvarovat se tomu není v podstatě možné, byť by svařování bylo provedeno přídavným svařovacím materiálem na bázi niklu.

Obrázek 1 ukazuje schématické znázornění uhlíkové difúze na příkladu spojení 10CrMo9-10 s X20CrMoV11-1 při použití různých přídavných svařovacích materiálů.

Schematické zobrazení "uhlíkové difúze" na příkladu smíšeného spoje 10CrMo9-10/2,25Cr/ – X20CrMoV11-1/12Cr/

a)Přídavný svařovací materiál: druhově stejný GW 10CrMo9-10

b)Přídavný svařovací materiál: druhově stejný základní materiál X20CrMoV11-1

c) Přídavný svařovací materiál: druhově rozdílný k oběma GW dílčí řešení např. s 5% Cr / 1% Mo

d)Přídavný svařovací materiál na bázi Ni. Uhlíková difúze je vzhledem k materiálu obsahujícímu více chrómu méně výrazná.

Nevýhody:

- rozdílný součinitel teplotní roztažnosti
- omezená možnost NDT zkoušení!

oduhličená zóna karbidová zóna

Změny struktury ovlivňují chování materiálu (houževnatost a pevnost) svařovaného spoje v oblasti oduhličených a nauhličených zón. U smíšených spojů mezi X20CrMoV11-1 a 10CrMo9-10, svařeno druhově stejně k jednomu z obou materiálů, nebudou často dosaženy bezpečné hodnoty houževnatosti neovlivněného základního materiálu v oblasti sváru zóny chudé na uhlík a karbidového okraje (silné rozptýlení dílčích hodnot).

Další kontroly ukázaly, že iniciace a šíření trhliny při rázové zkoušce ohybem, jsou ohraničeny na měkkou oduhličenou zónu. Důsledky během tlakové zkoušky nebyly však díky chování, zjištěnému při rázové vrubové zkoušce, nikdy zjištěny. Vzhledem k provoznímu chování při použité teplotě neexistuje rovněž žádný důvod k obavám, neboť při těchto teplotách existují dostatečně vysoké houževnatosti. Také porušení meze pevnosti v tečení v těchto smíšených spojích, které se objeví během více než 100.000 provozních hodin, nejsou dosud známy. Dokonce i při zkouškách meze pevnosti v tečení s vrubem v oduhličené zóně nebyl pozorován žádný předčasný lom.

U spojení mezi martenzitickými materiály jako např. mezi X20CrMoV11-1 a X10CrMoVNb9-1 (P91) se vychází z toho, že na základě malých rozdílů v obsahu chrómu mezi oběma materiály nevzniká difúze uhlíku nebo k ní dochází pouze v zanedbatelně malém měřítku, nezávisle na zvoleném přídavném svařovacím materiálu. Oproti tomu u smíšených spojů například mezi 10CrMo9-10 a X10CrMoVNb9-1, vystupuje charakter nauhličení a oduhličení výrazně silně najevo, nezávisle na použitém přídavném svařovacím materiálu. Slabé místo spoje se nachází buď v oduhličené TOO-oblasti 10CrMo9-10 (přídavný materiál k P91) nebo v oduhličené oblasti svarového kovu (přídavný materiál k 10CrMo9-10; viz obr. 2). Na základě rozsáhlých prohlídek výbrusů bylo dokázáno, že tvoření trhliny při zkoušce rázem v ohybu, dochází u těchto smíšených spojů principielně v zónách chudších na uhlík a tím také v měkčích.

Obrázek 2. Oduhličená oblast svarového kovu ve smíšených spojích 10CrMo9-10 / P91 svařeno přídavným materiálem druhově stejným k 10CrMo9-10 popř. k P91

U předcházejících příkladů nemůže být difúze uhlíku v materiálu 10CrMo9-10 brzděna, z důvodu nedostatku prvků tvořících slitinový karbid jako např. Nb, V nebo Ti. U nových bainitických materiálů T/P23 a T/P24 jsou oproti tomu takové prvky důležitými legujícími složkami, které výrazně zlepšují mez pevnosti v tečení. Dá se očekávat, že tyto prvky tvořící karbid působí také příznivě u smíšených spojů s martenzitickými materiály s vysokým obsahem chrómu T/P91, E911, T/P92 a VM12 s ohledem na zóny s nízkým obsahem uhlíku. Toto

očekávání by mělo být doloženo odpovídajícími zkouškami. Pro tento účel byly svařovány různé smíšené spoje.

Provedení zkoušek

Byly zkoumány následující dvojice materiálů:

- a) Kotlové trubky T23 / T91
- b) Kotlové trubky T24 / T91
- c) Potrubí /parovod/ P23 / P92

Pro dvojice materiálů T24 / T91 byly k dispozici pouze trubky s přibližně stejným průměrem. Tabulky 1.2až 1.4 obsahují analýzy a mechanické hodnoty jakosti základních materiálů. Pro oba potrubní materiály byly vždy použity svařovací přísady stejného druhu. Tabulka 7.8 obsahuje analýzy a mechanické hodnoty jakosti použitých svařovacích přísad. Tenkostěnné spoje kotelních trubek byly svařeny metodou WIG. U silnostěnných spojů P23 / P92 byly kořeny svařeny metodou WIG, další výplňové vrstvy svařeny elektrodami. Přípravy svárů jsou na obrázcích 8 a 9. Při spojování kotlových trubek činily předehřívací a interpass teploty 150 °C. Silnostěnné komponenty P23 / P92 byly předehřáté na 200 °C. Interpass teplota činila maximálně 270 °C. Všechny spoje byly po svaření tepelně zpracovány.

Základr	Základní materiál T23											
chem. a	nalýza	[hmc	tnostní %	6]								
С	Si		Р	S	Cr	Mo	Nb	Ν	V	W	Al	В
		Mn										
0,056	0,24	0,45	0,016	0,003	2,15	0,07	0,052	0,011	0,21	1,52	0,016	0,0029
Základr	ní mate	riál T	23									
Mechan	Mechanické vlastnosti; základní materiál (44,5 x 7,14 mm)											
Zkušel	oní tep	lota	ReH	Rm		A4	tvrdost					
+ [°C]			[N/mm2]	[[N/m	m2]	[%]	[HB]					
20			490	593		24	198					
Zábla de	ú moto	::::::::::::::::::::::::::::::::::::	01									
Zakiaui	n mate	Thme	91 tnostní 0	(1								
Client. a	naryza s;	Mn	D D	0]	Cr	Mo	NG	Nh	N	V	A 1	1
0.104	0.21	0.44	F	0.002	0.24	0.02	0.21	NU 0.067	IN 0.044	V 0.21	AI	
7/1-1-1-	0,51	0,44 	0,017	0,002	0,34	0,93	0,21	0,007	0,044	0,21	0,012	
Zakladi	ii mate	riai i	91 ativ málula	duć ma	toriál	(115)	. 6 5					
Mechan	licke v	lastno	SU, Zakia		terial	(44,5)	x 0,3 mm	1)				
Zkušel	oni tep	lota	ReH	Rm	21	A4	tvrdost					
$+ [^{\circ}C]$ $[^{IN/mm2}]$ $[^{IN/mm2}]$					im2]	[%]	[HB]					
20			548	710		24,8	221	1				

Tabulka 1.2. Základní materiály pro spojování kotlových trubek T23 / T91

Tabulka 1.3. Základní materiály pro spojování kotlových trubek T24 / T91

Základn	í mate	riál T2	24								
chem. a	nalýza	[hmot	nostní %	5]							
С	Si		Р	S	Cr	Мо	Ν	V	Ti	Al	В
-	~	Ma	-	~							_
		IVIN									
0,065	0,20	0,49	0,006	0,002	2,30	1,03	0,0095	0,25	0,088	0,01	0,0037
,	,	<i>,</i>	ĺ.	,	,		,	,	<i>,</i>	ŕ	<i>,</i>
Základní materiál T23											
Zakiadni material 125 Mashaniala ala ta atti afila da anatari (122 anatari (122 anatari))											
Wiechan	ICKE V	astnos	sti, zakia	um ma	ternar (30 X 0	,5 mm)				
Zkušeł	oní tep	lota 1	ReH	Rm		A4	tvrdost				
+ [°C]		1	N/mm2	[N/m	m2]	[%]	[HB]				
				-	-						
20		4	500	603		20,5	200				
						-) -		1			
Základr	í mate	riál TO)1								
chem_anali/za [hmotnostní %]											
chem. a	naryza	Inno	.nosun 70	0							
С	Sı	Mn	Р	S	Cr	Mo	Nı	Nb	Ν	V	Al
0,104	0,31	0,44	0,017	0,002	8,34	0,93	0,21	0,067	0,044	0,21	0,012

Základní materiál T91 Mechanické vlastnosti: základní, materiál (44.5 x 6.5 mn							
Zkušební teplota + [°C]	ReH [N/mm2]	Rm [N/mm2]	A4 [%]	tvrdost [HB]			
20	548	710	24,8	221			

Tabulka 1.4. Základní materiály pro potrubní spoje P23 / P92

Základ	lní mat	eriál F	23											
chem.	analýz	a [hmo	otnostní	%]										
С	Si		Р	S		Cr	Mo	Nb	Ν	V	W	Al	В	
		Mn												
0,07	0,28	0,54	0,008	0,	004	2,08	0,08	0,03	0,011	0,22	1,65	0,018	0,002	
Základ	Základní materiál P23													
Mecha	Mechanické vlastnosti; základní materiál (219,10 x 20 mm)													
Zkušební teplota ReH Rm A4														
+ [°C]		[N/mm2	2]	[N/1	mm2]	[%]							
20			467		575		27,5							
Základ	lní mat	eriál F	92											
chem.	analýz	a [hm	otnostní	%]										
С	Si	Mn	Р	S		Cr	Mo	Ni	Nb	Ν	V	W	Al	В
0,11	0,21	0,43	0,013	0,	006	8,93	0,49	0,12	0,05	0,055	0,19	1,65	0,008	0,005
Základ	lní mat	eriál F	92											
Mecha	unické ^v	vlastno	osti; zákl	ladı	ní m	ateriál	(219,1	0 x 20	mm					
Zkuše	ební te	plota	ReH		Rm		A4							
+ [°C	[]		[N/mm2	2]	[N/1	mm2]	[%]							
20 518 736					26									

Tabulka 1.5. Analýzy a mechanické hodnoty použitých přídavných svařovacích materiálů

Chemická analýza drátu po	hemická analýza drátu popř. čistého svarového kovu (hmotnostní %)												
SZW	С	Si	Mn	Cr	Mo	Ni	Nb	Ν	V	W	Cu	В	Ti
WIG; druhově stejný P23	0,061	0,45	0,53	2,02	0,03	0,13	0,04	0,01	0,22	1,78	0,10	0,002	0,005
Ø 2,4 mm													
WIG; druhově stejný P24	0,073	0,26	0,45	2,32	0,92	0,09	0,01	0,006	0,25	<,002	0,17	0,002	0,086
Ø 2,4 mm													
El: druhově stejný P23	0,057	0,23	0,62	2,20	0,03	0,05	0,04	0,022	0,20	1,59	0,06	0,002	<,001
Ø 3,2 mm													
El: druhově stejný P92	0,113	0,35	0,74	8,97	0,56	0,61	0,06	0,038	0,22	1,57	0,03	0,005	0,007
Ø 3,2 mm													
Mechanické vlastnosti čisté	ho svarc	ového k	xovu; z	zkušeb	ní tepl	ota: + 2	20°C						
SZW	WBH	Rp0,	2 Rr	n.	A5	Av, ISO	D-V						
	[°C/h]	[MPa	a] [M	[Pa]	[%]	[1]							
		-											
WIG; druhově stejný P23	740/2	621	70	8	21,0	256 / 2	07 / 24	2					
Ø 2,4 mm					ŕ								
WIG; druhově stejný P24	740/2	595	69	9	20,5	264 / 2	86 / 29	2					
Ø 2,4 mm					ŕ								
El: druhově stejný P23	750/2	523	63	3	20,8	100 / 1	37 / 14	4					
Ø 3,2 mm					<i>,</i>								
-													
El: druhově stejný P92	750/2	691	81	0	19,0	54 / 60	/ 65						
Ø 3,2 mm					/-								

Obrázek 3. Příprava sváru a svařený spoj T23 / T91

Přídavný svařovací materiál: WIG, druhově stejný k T23, Ø 2,4 mm rozměr trubky: 44,5 x 7,14 (mm); Tp = 150°C, Ti = 200°C, Is = 140 A

Obrázek 4. Příprava sváru a svařený spoj P23 / P92

Přídavný svařovací materiál, kořen: WIG; druhově stejný k P23 popř. druhově stejný k P92, Ø 2,4 mm

Přídavný svařovací materiál výplňové vrstvy: elektroda; druhově stejný k P23 popř. druhově stejný k P92, Ø 3,2 / 4,0 mm

rozměr trubky: 219 x 20 (mm); Tp = 200°C, Ti = 270°C, Is = 160 A

Výsledky zkoušek

Mechanické hodnoty

Mechanické hodnoty jakosti svařovaných spojů byly zjištěny ve svařeném stavu a následném TZ, pro zjištění, zda se vyskytuje změna ve zlomu vrstev v závislosti na stavu zpracování, při zkoušce příčným tahem. Pevnostní hodnoty spojů byly určeny pomocí plochých zkoušek tahem napříč ke sváru při pokojové teplotě a při teplotě 500 °C. Při všech zkouškách vždy došlo k přetržení v méně pevném základním materiálu. Přitom byly bezpečně dosaženy specifické minimální hodnoty pevnosti základních materiálů T23, T24 a P23. Při použití svařovacích materiálů stejného druhu k nízko legovanému materiálu byly dosaženy nejvyšší hodnoty houževnatosti. Tabulky 1.6 až 1.8 obsahují zjištěné mechanické hodnoty. Obrázky 3 a 4 zřetelně ukazují, že druhově stejný svařovací materiál k P92 a k P23 vykazuje vyšší pevnost než základní materiál P23. Z toho je rovněž možné vyvozovat, že neexistuje žádné významné

oduhličení mající vliv na pevnostní chování v oblasti spojů v blízkosti tavicích linií. To bylo doloženo metalografickými zkouškami.

Tabulka 1.6. Sp	oje T23 / T91	; svařeno	metodou	WIG
-----------------	---------------	-----------	---------	-----

Přídavný svařovací materiál: druhově stejný P23, Ø 2,4 mm; základní materiály: T23 (44,5 x 7,6 mm) na T91 (44,5 x 7,14 mm)											
WBH	Zkušební teplota	Rm		Av střed SG [J/cm ²]	Ohybová						
[°C/min]	+ [°C]	[N/mm2]	Umístění zlomu	při teplotě + 20°C	zkouška						
Svařovaný stav	20	595	GW T23	53/85/93	DiZ/WiZ						
	500	476	GW T23		180° o. B.						
740/30	20	563	GW T23	73/95/158	DiZ/WiZ						
	500	436	GW T23		180° o. B.						

Tabulka 1.7 Spoje T24 / T91; svařeno metodou WIG

	Přídavný svařova	ací materiál: druhov	vě stejný P2	24 (legování Ti/B)), Ø 2,4 mm;			
základní potrubní materiály: T24 (38,3 x 6,3 mm) na T91 (44,5 x 7,14 mm)								
	WBH Zkušební teplota Rm Umístění zlomu Av střed SG [J/cm ²] Ohybová							
	[°C/min]	+ [°C]	[N/mm2]		při teplotě + 20°C	zkouška		
	Svařovaný stav	20	598	GW T24	57/65/104	DiZ/WiZ		
		500	445	GW T24		180° o. B.		
	740/30	20	574	GW T24	135/152/148	DiZ/WiZ		
		500	464	GW T24		180° o. B.		

Tabulka 2.8. Spoje P23/P92 svařeno elektrodou; kořen WIG

Přídavný svařova	ací materiál : druho	vě stejný P	23, Ø 3,2 / 4,0 m	n; základní potrubní	materiály: P2	23 na P92 (oba 219,10 x 20 mm)
WBH	Zkušební teplota	Rm	Umístění zlomu	Av [J]	Ohybová	
[°C/min]	+ [°C]	[N/mm2]		při teplotě + 20°C	zkouška	
Svařovaný stav	20	653	GW P23	29/26/33	DiZ/WiZ	
		636			180° o. B.	
	500/550	448/434				
740/30	20	613		138/136/132	DiZ/WiZ	
		598		132/135	180° o. B.	
	500/550	432/386				
Přídavný svařova	ací materiál : druho	vě stejný P	92, Ø 3,2 / 4,0 mi	n; základní potrubní	materiály: P	23 na P92 (oba 219,10 x 20 mm)
WBH	Zkušební teplota	Rm	Umístění zlomu	A _v [J]	Ohybová	
[°C/min]	+ [°C]	[N/mm2]		při teplotě + 20°C	zkouška	
Svařovaný stav	20	605	GW P23	7/7/6	DiZ/WiZ	
		605			180° o. B.	
	500/550	462/434				
740/30	20	589		40/46/44	DiZ/WiZ	
		590			180° o. B.	
	500/550	419/385				

Obrázek 3. zkouška tahem spoje P23 / P92, p.m.druhově stejný k P23

Obrázek 4. zkouška tahem spoje P23 / P92, p.m.druhově stejný k P92

2. Metalografické zkoušky, tvrdost a rozdělení prvků

Pomocí metalografických zkoušek byly prozkoumány zejména oblasti blízko tavných linií s ohledem na oduhličení a nauhličení. Obrázky 58- ukazují výsledky metalografických zkoušek. V žádném případě neklesá tvrdost významně pod tvrdost základního materiálu v oblasti blízkosti tavných linií svarového materiálu a TOO. Prvky vytvářející karbid v druhově stejných svařovacích materiálech k T/P23, T24 a P92 zamezují silnou difúzi uhlíku, tak jak to například existuje v případě svarového materiálu vůči 10CrMo9-10 (obrázek 2). Kromě toho byly provedeny zkoušky na rozdělení prvků pomocí mikrosondy s elektronovým paprskem, které tuto domněnku potvrdily. Tímto by měly být srovnatelné i meze pevnosti v tečení takových smíšených spojů k druhově stejným spojům nížepevnostních potrubních materiálů. Započaté zkoušky by to měly doložit. Obrázek 5. spoj T23 / T91, svařený druhově stejným p.m k T23 (TZ 740°C/30 min.)

Obrázek 6. spoj T24 / T91, svařený druhově stejným p.m. k T24 (TZ: 740°C/30 min.)

Obrázek 7 spoj P23 / P92, svařený druhově stejným p.m. k P23 (TZ: 740°C/2 h)

Obrázek 8. spoj P23 / P92, svařený druhově stejným p.m. k P92 (TZ: 740°C/4 h)

Abstand der Eindrücke (mm)

Byly prozkoumány vlastnosti spojů nových ocelí T23 / T91; T24 / T91 a P23 / P92. Oproti stávajícím smíšeným spojům 10CrMo9-10 / P91 omezují popř. redukují uhlíkovou difúzi prvky vytvářející slitinové karbidy V, Nb a Ti, nezávisle na tom zda druhově stejné přídavné materiály budou vybrány k nízkolegovaným ocelím nebo k vysoce legovaným materiálům. To by mohlo také pozitivně působit na vlastnosti meze pevnosti v tečení druhově stejných smíšených spojů. Odpovídající zkoušky jsou zavedeny. S druhově stejnými svarovými materiály k T/P23 a T/P24 jsou k dispozici přídavné svařovací materiály, které by také mohly vést u smíšených spojů s ocelemi, u kterých žádný partnerský materiál neobsahuje žádné prvky vytvářející slitinové karbidy, ke zmírnění uhlíkové difúze. Např. pro dvojice materiálů 10CrMo9-10 /

P91 jsou výhodnější. Další zkoušky zde představených nových, nízkolegovaných přídavných svařovacích materiálů by měly podpořit aplikační přednost oproti dosavadním běžným svářečským řešením pro smíšené spoje a popřípadě současně existující doporučení doplnit. Pokyny k označení výrobků použitých přídavných materiálů pro svařování budou získány z tabulky 2.

	Druhově stejné k			
	T/P23	T/P24	T/P91	P92
WIG	Union I P23	Union I P24	Thermanit MTS 3	Thermanit MTS 616
Elektroda	Thermanit P23	Thermanit P24	Thermanit MTS 3	Thermanit MTS 616

Tabulka 2.1. Použité druhově stejné přídavné svařovací materiály

Použité materiály firem:

Böhler Schweisstechnik Deutschland GmbH Vallourec&Mannesmann Tubes Deutschalnd GmbH